Crescendo: Engaging Students to Self-Paced
Programming Practices

Wengran Wang, Rui Zhi, Alexandra Milliken, Nicholas Lytle, Thomas W. Price
North Carolina State University
Raleigh, NC
wwang33,rzhi,aamillik,nalytle,twprice@ncsu.edu

ABSTRACT

This paper introduces Crescendo, a self-paced programming prac-
tice environment that combines the block-based and visual, interac-
tive programming of Snap!, with the structured practices commonly
found in Drill-and-Practice Environments. Crescendo supports stu-
dents with Parsons problems to reduce problem complexity, Use-
Modify-Create task progressions to gradually introduce new pro-
gramming concepts, and automated feedback and assessment to
support learning. In this work, we report on our experience deploy-
ing Crescendo in a programming camp for middle school students,
as well as in an introductory university course for non-majors. Our
initial results from field observations and log data suggest that the
support features in Crescendo kept students engaged and allowed
them to progress through programming concepts quickly. However,
some students still struggled even with these highly-structured
problems, requiring additional assistance, suggesting that even
strong scaffolding may be insufficient to allow students to progress
independently through the tasks.

ACM Reference Format:

Wengran Wang, Rui Zhi, Alexandra Milliken, Nicholas Lytle, Thomas W.
Price. 2020. Crescendo: Engaging Students to Self-Paced Programming Prac-
tices. In The 51st ACM Technical Symposium on Computer Science Education
(SIGCSE °20), March 11-14, 2020, Portland, OR, USA. ACM, New York, NY,
USA, 7 pages. https://doi.org/10.1145/3328778.3366919

1 INTRODUCTION

The past 40 years have seen significant changes in the design and
implementation of introductory programming courses and mate-
rials, with a focus on the design of programming environments.
Two types of programming environments have been commonly em-
ployed for students: 1) Novice Programming Environments (NPEs)
such as Scratch [38], Alice [5] and MIT Applnventor [35] and
2) Drill-and-Practice Systems (D&PSs) such as CodeWorkout [9],
CloudCoder [21] and Problets [24].

NPEs have been shown to improve students’ engagement [10, 29]
and grades [7] compared to traditional instruction. These environ-
ments feature block-based interfaces that can increase students’
performance and learning [36, 43]. They allow students to create

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGCSE °20, March 11-14, 2020, Portland, OR, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6793-6/20/03...$15.00
https://doi.org/10.1145/3328778.3366919

interesting and meaningful programs, such as visual and interactive
games [38] and are traditionally paired with open-ended curric-
ula (e.g. BJC [16]), letting students explore programming concepts
with open-ended labs. Although exploration can create powerful
learning experience for novices, it can also be overwhelming, cre-
ating a large cognitive load and requiring much instructor support.
For example, Lee and Ko [26] studied instructional approaches in
their Gidget programming game by comparing an “open-ended,
creation-oriented” curriculum based on their puzzle designer to a
highly-structured set of levels, and found students learned consid-
erably more in the latter.

Drill-and-Practice Systems (D&PSs) such as CodingBat [33],
CloudCoder [21], CodeWorkout [9], Infandango [22], and Problets
[24] offer different advantages. They offer automated assessment
and immediate feedback [9, 21, 22, 33], which is a critical com-
ponent of learning [11]. They employ smaller assignments that
isolate a single programming concept and allow students to focus
on practicing one programming concept or strategy at a time. The
structure of these environments also makes it easier to apply ideas
from intelligent tutoring systems [41], such as mastery learning [6],
adaptivity [12], and automated formative assessment [1], which
can dramatically increase students’ learning.

In this paper, we present Crescendo, a self-paced programming
practice environment that attempts to blend the advantages of both
NPEs and D&PSs. Crescendo’s practice problems allow students
to create interesting programs with visual and interactive output
using block-based programming (as in NPEs), while focusing on
smaller, single-concept tasks and offering automated feedback and
assessment (as in D&PSs). Crescendo adds additional scaffolding to
support students’ independent learning, including a Use-Modify-
Create scaffolding approach [25, 27], and the use of Parsons prob-
lems to increase learning efficiency [44]. The system also features
detailed logging that can be used to better understand students’
progress. The goal of Crescendo is to leverage all of these features
to create a self-paced programming practice experience that: 1)
engages students in creating interesting programs; 2) supports stu-
dents to work independently; 3) provides a scaffolded progression
of tasks that slowly increases in difficulty.

2 RELATED WORK

Novice Programming Environments: Novice programming en-
vironments (NPEs) such as Scratch [38], Alice [5], and Snap! [16]
provide features such as graphical feedback and block-based pro-
gramming languages to help beginners learn programming. These
environments are useful for making games, animations, and other
programs with visual and interactive output. They are widely used

https://doi.org/10.1145/3328778.3366919
https://doi.org/10.1145/3328778.3366919

in introductory Computer Science curricula (e.g. [2], [18]). Fea-
tures of NPEs, such as block-based programming and visual output,
have been shown to improve student performance, learning and
engagement. Compared with textual programming environments,
block-based programming environments are shown to promote
not only greater performance and learning gains [37, 43], but also
students’ longer-term interest toward future programming courses
[43]. Additionally, visual output offered by NPEs has been shown
to engage students and improve their programming performance
[28].

On the other hand, other elements of NPEs have seen less empir-
ical evaluation. For example, the costs and benefits of open-ended
programming, in which students retain some control and creativ-
ity over their solution, is more widely debated. These open-ended
programming tasks are popular in K-12 curricula (e.g. [16]), as
well as informal learning settings, such as camps [45] and after
school settings [30]. Proponents argue that these tasks offer stu-
dents an engaging context [5], afford the creation of meaningful
projects[38] and enable “differentiated learning” [16]. However,
empirical results suggest that novices may need more structure:
Lee and Ko [26] compared three different tools for programming
learning: 1) A Python course on CodeAcademy; 2) a programming
debugging puzzle game, Gidget with tutorials and step-by-step
goals; and 3) the Gidget Puzzle Designer, with open-ended and
creation-oriented design. A population of crowd workers were ran-
domly assigned to each condition, and pre/post-tests showed sig-
nificant learning gains only for the more structured CodeAcademy
and Gidget Game groups, not for the open-ended Gidget Puzzle
Designer group, suggesting that open-ended instruction alone may
be ineffective. Additionally, Meerbaum-Salant et al. [31] discov-
ered two detrimental programming habits among middle school
students while completing open-ended Scratch projects - “bottom-
up programming” strategies, as well as “Extremely Fine-Grained
Programming”. These findings suggest that there may be a need
to supplement open-ended programming with more structured
practice.

Drill-and-Practice Systems: In contrast to NPEs, which host
open-ended programming tasks, Drill-and-Practice Systems (D&PSs)
feature smaller and closed-ended tasks, grouped by concept cate-
gories. Such systems aim to help students practice isolated program-
ming concepts one at a time. The closed-endedness of tasks within
D&PSs allows the integration of immediate feedback through test
cases at scale [9, 21, 22, 33]. Systems with such immediate feedback
have been well-received among programming students: students
in a CS1 course found the CodeWorkout system - an online D&PSs
that features autograding and automated feedback - intuitive, and
thought it helped improve their programming skills [9]. In addi-
tion, D&PSs afford explanations of step-by-step program execution,
which could help novices trace code and develop their program
models [24]. D&PSs could also blend in Intelligent Tutoring Sys-
tem(ITS) elements, such as the automatic code hints found within
the ITAP system - a D&PS that teaches Python programming [39].
Intelligent Tutoring Systems simulate a human tutor, integrated
with Artificial Intelligence, and are shown to improve students’
programming learning more than traditional instruction [32]. DPSs

with such ITS elements could be powerful learning tools for stu-
dents.

NPE Features + D&PSs’ Learning Structure:

Our goal with Crescendo is to combine the benefits of NPEs with
D&PSs, a goal shared with some prior systems. For example, the
Lambda Autograder [3] adds an autograding feature to Snap!, al-
lowing instructors to author test cases that check students’ block-
based code for certain functionality. As detailed later, Crescendo
integrates Lambda’s autograding framework, adding additional
functionality for testing purposes. BlockPy [4] is an NPE, with a
hybrid block/text programming and visual data analysis output,
which also offers real-time, adaptive feedback [19]. Similarly, iSnap
adds on-demand, data-driven, contextualized hints and feedback
to traditional open-ended programming based on a block-based
programming environment [37]. In a classroom pilot study, Price et
al. found that the hints in iSnap help students finish open-ended as-
signment objectives. Code.org’s AP CSP curriculum uses small fixed
self-paced curriculum lessons with added flexibility for students
to create visual, interactive programs, and integrates automated
feedback to give students real-time support.

Crescendo builds on these prior environments by adding addi-
tional support, including the Use-Modify-Create (UMC) framework
[25] and Parsons problems [34]. The UMC framework works by
beginning with high scaffolded activities (using pre-made code)
and slowly fading scaffolding until students engage in open-ended
creation tasks. This resembles other educational theories such as
the Zone of Proximal Development [42], which argue that students
should engage in activities with carefully-designed instructional
support, that allows them to develop their skills to the point of
needing less and less help. The UMC framework helps to keep
students in the Zone of Proximal Development by starting with
code that helps students understand the underlying concept (Use),
scaffolding the completion of a new problem with similar structure
(Modify), and finally requiring them to create their own solution
from scratch (Create). As an educational framework to promote stu-
dents’ learning and computational thinking development, the UMC
framework leads students to progress from using existing programs
to creating their own programs [25]. Lytle et al. evaluated the UMC
framework in a quasi-experimental study by comparing a UMC cur-
riculum with a traditional curriculum with middle school students.
They found that students in the UMC condition finished tasks faster
and seemed to be more engaged in the class activity, and the UMC
framework helped students build their sense of ownership over
the programming artifacts they created [27]. Additionally, teachers
perceived that the UMC curriculum was easy to teach. Block-based
environments like Scratch with their social sharing components
afford this Using and Modifying behavior, and users who engage
in heavy "remixing" or modifying of prior projects interact with
a wider variety of blocks and structures in their coding projects
[8, 23].

In addition to a UMC progression that supports students across
tasks, we also integrated Parsons problems into each Crescendo
task, with the intent to help students engage in programming and
learn efficiently. Parsons problems break a correct solution into
code pieces and require students to re-arrange those mixed-up
code blocks to restore the original solution. Previous work has

BRIDGE OF SHAPES

(2) UMC progression

Lever2-2 |

% MODIFY ©
l;wem steps.
move E[D steps | clear

|0 to x: €D v: @
| point in direction €75
| draw a square with [1] size

(1) Simplified Snap! Window

Instruction:

Modify the starter code to add a gap in
between each shape:

>

(1) Simplified Snap! Window

Figure 1: Crescendo Task Interface.

shown that Parsons problems are engaging [13, 15, 17] and can
improve students’ programming efficiency [12, 14, 20, 44]. Ericson
et al. designed and integrated Parsons problems into an ebook
and found that more students attempted Parsons problems than
multiple choice questions [13]. In a classroom study, Zhi et al. found
that students spent less time on solving the block-based Parsons
problems than equivalent code writing, and performed as well on
post-test problems [44].

3 CRESCENDO SYSTEM

Learning in Crescendo is organised into a hierarchy: “Concepts -
Challenges — ‘Use-Modify-Create’ Tasks” (Figure 1). It organizes
small programming tasks into challenges based on programming
concepts such as loops and conditionals. Each concept may have
multiple challenges and each challenge covers a single learning
objective of a concept. In each challenge, students accomplish three
programming tasks following the UMC scaffolding. Crescendo is
designed as a platform to host a variety of Snap! programming chal-
lenges and tasks. Instructors can plan the programming concepts,
design challenges and tasks.

Figure 1 shows an example interface of a task. Crescendo aug-
ments and revises the Snap! programming interface with three
important changes: (1) Parsons problem and simplified Snap! in-
terface with short instructions; (2) the UMC task progression[27];
and (3) the Check-My-Work automated feedback. We describe each
change below.

Parsons Problems and Simplified Snap! Interface: The tasks
in Crescendo are Parsons problems, providing students with a lim-
ited number of blocks needed to solve the task. Figure 1-(1) shows
the Parsons problem design based on that of Zhi et al. [44], which
restricts user interactions with the programming environment, such
as making the block inputs non-editable and removing interface el-
ements that are irrelevant to the problem and may distract students.
To simplify students’ experience, they were also provided with only
one or two lines of instructions with images in each task. In addi-
tion, many elements of the Snap! interface, such as creating new
Sprites, have been removed for simplicity. Crescendo also builds
on the logging feature from iSnap [37], which logs students’ code

* % %

Check My Work |

Hover over the stars to see what to work on!
You are close, but the gap between the first square and triangle

>
\ is still missing

I want to proceed to the next task

Figure 2: After (A) clicking on the Check-My-Work button,
students can (B) hover on the stars to view the objectives.

snapshots and interactions with the system, such as click events
(e.g. clicking a button) and code edits (e.g. dragging and dropping
code).

The UMC Task Progression: Each challenge has three tasks,
which follow the idea of “use, modify, create” (UMC) [25]. A spe-
cific example of a UMC task progression is presented in Section
4. The general design of the UMC progression starts from a Use
task that asks students to run an existing program, understand its
output, and sometimes make a small modification that reflects this
understanding (e.g. change a literal value). In Crescendo’s Use tasks,
We conclude by asking students a short multiple-choice question
about the code (e.g. “In the given example code, which block con-
trols how many squares and triangles are drawn?”). Students can
attempt the question until they get it correct. The Modify tasks in
Crescendo give students incomplete or incorrect code, requiring
them to improve the code according to task objectives. The Create
tasks ask students to design their own code independently, giving
them minimal help or support. To progress from Modify to Create,
or from Create to the next challenge, students need to successfully
finish all the objectives of the task.

The Check-My-Work Feedback: In each task, students can click
on the Check-My-Work button to check their current progress. The
button contains stars that represent the objectives of the current
task. While solving a task, students can either run their code or
click on the Check-My-Work button to update the stars and see
the objectives that they have accomplished (filled golden stars),
and have not (unfilled hollow stars). The drop-down output of the
Check-My-Work button gives students an overview of the objec-
tives they have or have not achieved (shown in Figure 2). When a
student finishes the last objective, all stars will be activated, and a
“Continue” button shows up, allowing her to click on it to move to
the next task.

4 CRESCENDO CONTENT DESIGN

While Crescendo supports arbitrary programming tasks, in this
work we implemented a small set of practice tasks for new pro-
grammers, which we deployed in two use cases (described below).
These practice tasks focus on two introductory concepts: Loops
and Conditionals. Described in Table 1, the 6 deployed challenges
exemplify the challenges supported by Crescendo: each challenge
enables the practice and learning of a small programming concept,
which is necessary prerequisite for the next challenge. For example,

to complete Loops1, students need to understand code sequences
inside a loop and the number of times a loop executes, which is
prerequisite for Loops2 - focusing on how code executes inside and
outside of a loop. Instructors can set order of the challenges while
planning the course. And we recommend the challenges of different
concepts to be interleaved when students are to practice more than
one concept, as prior work suggests that students can learn better
with interleaved exercises than blocked [40].

Table 1: 3 Loops Challenges and 3 Conditionals Challenges,
with learning objectives.

Challenge Learning Objective

Loopsl * Loops repeat code sequentially a given num-
ber of times

Loops2 * Combine code inside and outside of loops

Loops3 * Differentiate patterns inside nested loops

Conditionals1 Understand how a conditional pathway op-
erates

Conditionals2 Differentiate conditional pathways inside
nested conditionals

Conditionals3 Understand the sequence of actions in a se-
quence of conditionals

" Used in the Camp study.
* Used in the CS0 course.

Inside each challenge, we designed a UMC task progression to
provide tasks that are engaging, closed-ended, and slowly increase
in difficulty. As an example, Figure 3 shows the progressions of
the Loops3 challenge. Its goal is to help students understand and
create programs with nested loops. The instructions are shown at
the lower part of the figure, while the upper part - the “stage” of the
program - is where students can execute the program and observe
the output immediately. The “stages” in Figure 3 are outputs of
starter code from the 3 tasks. For example, in the first (Use) task,
given the starter code that already draws 3 rows of triangle series
with 4 triangles in each row, students only need to change the
number in the inner and outer repeats to achieve the goal.

The UMC tasks in this Loops3 challenge progress from: 1) helping
students identify the repeating pattern of the inner and outer loop
(Task 1); 2) reinforcing understanding of inner and outer loops
by making changes to an already-existing nested loop (Task 2); 3)
Independently creating nested loops that reproduce the pattern
described in the instructions (Task 3). The other challenge designs
follow a similar pattern of scaffolding, and our goal is to populate
each Crescendo challenge with such progressive tasks, which focus
on the same learning objectives, increasing slowly in difficulty.

5 USE CASES

In this section we present two use cases for Crescendo: an activity in
a middle-school summer camp and a homework assignment for an
undergraduate CS0 course. We deployed Crescendo in both, and we
summarized our observations and findings. These two deployments
give us complementary understanding about Crescendo: in the
summer camp classroom we observed students’ interactions with

Task 2 - Modify

Task 3 - Create

Task 1 - Use

Instruction: Instruction: Instruction:

Using the starter code, create code to draw Create code to do tis:
his: —

Figure 3: The UMC task design for Loops3, a challenge on
nested loops. Students start by using existing code to create
zig-zag shaped patterns. Output from students’ starter code
is displayed on the “stage”

the system, and in the CS0 course we collected additional survey
data.

5.1 Summer Camp

Students and Instructors: In the summer camp classroom, we had
23 middle-school students (12-14 years old) who were attending a
coding summer camp held at a large, public university in the South-
east United States. The 2 instructors in the summer camp were local
high school teachers from non-programming disciplines. A month
before the week of the camp, we hosted a half-day training for the
instructors where they programmed two introductory assignment
(Draw Square and Click Alonzo) using Snap! and reviewed the
camp schedule.

Activities: On the first day of the camp, the instructors gave the
students a 54-minute Snap! tutorial to familiarize them with the pro-
gramming environment, and to guide them through programming
their first assignment (Draw Square). Then the students completed 2
of the 6 Crescendo challenges as a warm-up practice. After complet-
ing both Loops1 and Conditionals1, they completed two open-ended
labs in the standard Snap! environment - Daisy Design (focusing
on Loops) and Guessing Game (focusing on conditionals and some
basic loops knowledge). After the two labs, students completed
the remaining 4 challenges in Crescendo: Loops2, Conditionals2,
Loops3 and Conditionals3. We observed engaged students working
productively and successfully, employing new concepts through-
out the day, though certainly tired by the end of the programming
session.

5.2 CS0 Course Homework

Students and Instructor: The 50 students who completed the CS0
Crescendo homework were undergraduate non-major students at
the same university where the summer camp was held. This course
introduces basic programming concepts in Snap!, by integrating
the Beauty and Joy of Computing curriculum [16]. Students had
only taken 30 minutes in class to receive a Snap! tutorial before
using this tool. While the instructor was the designer of Crescendo,
he only gave students an instruction sheet and asked the student
to complete the tasks in Crescendo as homework.

Activities: The instructor in CS0 planned the challenges to include
only challenges around the concept of Loops: two required chal-
lenges (Loops1 and Loops2), and one optional challenge (Loops3).
Since students were completing Crescendo tasks outside of class,
we collected students’ programming log data, as well as their likert-
scale ratings of the system’s difficulty, helpfulness and engagement.

5.3 Findings and Observations

To investigate whether Crescendo succeeded in its goal of creating
a scaffolded and engaging learning experience for students, we
present some quantitative findings, collected from Crescendo’s log
data, that help us summarize students’ overall experience. We also
report our own observations from Crescendo’s deployment in the
summer camp and the collected rating data from the CS0 homework
activities.
Were tasks quick and consistent?
Recall that one of our goals for Crescendo was to provide a scaf-
folded progression of tasks that can be accomplished quickly, and
slowly increases in difficulty. If this is the case, we would expect
students to spend a relatively short and similar amount of time
on each task. To investigate this, we calculated the average time
students spent to finish each task in Crescendo with their stan-
dard errors (see Figure 4). The x-axis presents us the tasks, with
L1U representing the Use task of Loops1, C2M representing the
Modify task of Conditionals2, etc. The tasks with a “+” sign after
their names were implemented in the CSO homework activities. We
marked the total number of students who successfully completed
the task on the bottom of each bar, and their average time spent
on the top of each bar !. We noted that most tasks took a fairly
short amount of time (1-5 minutes). But the 3 tasks with feedback
errors (not shown in Figure 4) took considerably more time (L3C:
m = 6.41 min; C2M: m = 16.805 min; L3C+: m = 8.608 min). We
believe this was because these later tasks were more difficult and
not because the errors may have slowed students down.
Did students use the automated feedback?
Remember that one of our goals for Crescendo was to provide the
benefits of immediate feedback. While we have no control group,
one way of measuring this is to look at how frequently the Check-
My-Work button was used. We hope that we would find frequent
usage of the Check-My-Work button, indicating that the feature is
useful to the students. From our data, we see a range of 0.14 to 3.03
among students’ average frequency of clicking the button across
different tasks, indicating that students did make good use of help
features, but that it was concentrated on more difficult problems.
What do students think about Crescendo?
Another goal of Crescendo was to engage students to solve scaf-
folded progression of tasks that slowly increases in difficulty. If this
is the case, we would see a gradual increase in students’ perceived
task difficulty, without losing their perceived engagement and task
helpfulness.

To understand students’ perceptions of their experience, we
prompted the 50 students in the CS0 course to answer the following
rating questions after they finish each task: From scale 1-5, how

!We excluded students from tasks if they requested to skip the task or were still
working when time ran out. We removed 1 task which only 6 students completed (C3C:
m = 11.95 min).

would you rate this task that you have just finished? 1) How difficult
was the task you just completed? (difficulty) 2) How helpful was the
task for your learning? (helpfulness) 3) How engaging did you find
this task? (engagement). Figure 5 shows students’ perceived mean
difficulty, engagement, and helpfulness of each task, y-axis ranging
from 1.5 to 4.5. We have included the number of rating records we
collected for each task at the bottom of each data point. We noticed
students experiencing gradually increasing difficulty level between
each challenge, as well as inside the UMC progression of each
challenge. Their average ratings on engagement and helpfulness
kept relatively high (above 3.5). Comparing with their trends on
the difficulty ratings, their engagement and helpfulness ratings had
a similar but smaller-scaled increase across and within challenges.

While students’ ratings on different tasks allowed us to under-
stand students’ experience with task progressions, we also wanted
to understand how they perceive their experience with Crescendo
overall. Compared with a normal Snap! interface, we wanted to
see whether Crescendo may be more engaging and helpful for stu-
dents’ learning. We evaluated their overall perceptions with the
system at the end of the Crescendo experience by asking them to
do a likert scale rating from strongly disagree to strongly agree
for the following question: This version of Snap! is different from
the one you used in class (e.g. it checks your work and only gives
you the blocks you need for each task). How much do you agree
with the following statements: 1) This version of Snap! is more
motivating for me; 2) This version of Snap! is more helpful to me.
Among 48 students from whom we have collected the answers,
many agreed or strongly agreed that learning in Crescendo is more
helpful (68.75%), as well as more motivating (58.33%), with 2 (4.17%)
and 3 (6.25%) saying disagree, none strongly. Additionally, we have
also found 30 students (60%) in the CS0 course successfully com-
pleted the optional, third challenge (Loops3). This also suggested
that students were engaged enough with Crescendo to continue
working voluntarily.

6 DISCUSSION AND IMPLICATIONS

Based on the findings presented in the above section, in this section,
we discuss the value added by Crescendo to its related work on
current NPEs and other programming practice environments. The
results have given us positive take-aways for future tool designs and
classroom implementations, offering information for instructors to
accommodate our tool to their own classrooms.

Interactive programs can still be engaging even when they
are short and closed-ended.

One concern with moving from open-ended block-based program-
ming practices to shorter closed-ended ones is that this would
reduce students’ engagement, but our rating results show that most
students found Crescendo more engaging than their regular, more
open-ended lab experience. Additionally, many CS0 students were
engaged enough to complete optional tasks in Crescendo. This
suggests that we can still reap the benefits of visual, interactive
programming, even in quick and closed-ended tasks. We therefore
recommend tool designers and teachers to add closed-ended tasks
into block-based activities, for they not only serve as an effective
practice opportunity, but also an engaging experience.

Mean Total Time (minutes)
[SEENIL SIS

Average Time Spent On Crescendo Tasks

BMcamp
i ' i - i i - -

L1U L1M LiC L3U L2M L3C L3U L3M ciu cim cic C2U C2C C3U C3M L1U+L1M+L1C+ L2U+ L2M+ L2C+ L3U+L3M+

Figure 4: Average time spent on each Crescendo tasks for both Camp and CS0 course students with standard error bars.

Helpfulness, Engagement, Difficulty Ratings

4-

° -2 Difficulty

§ 3 -arEngagement

@ “&rHelpfulness
2.

48 47 48 48 49 48 34 34 3N
L1U L1M L1C L2U L2M L2C L3U L3M L3C
Task
Figure 5: Students’ average ratings on each category across
different tasks with error bar.

The UMC scaffolding may keep students in the Zone of Prox-
imal Development.

Within each challenge, from the Use task, through the Modify task,
to the Create task, we found a desired, gradual increasing self-rated
difficulty. This is consistent with the findings by Lytle et al. [27],
showing that in a Use-Modify-Create progression, students’ per-
ceived difficulty grows slowly, instead of introducing sudden spikes
of difficulty.

While students perceived increased difficulty, they did not take
more than 5 minutes to complete most of the tasks, suggesting that
they learned the necessary skills to tackle the difficult tasks. This is
consistent with the theory of the Zone of Proximal Development
[42], which encourages tutors and tools to keep students working
on tasks at the edge of their ability, while offering scaffolded in-
structions to allow them to accomplish these tasks. Students” high
helpfulness ratings suggest that they received this needed help
from Crescendo. Our findings highlighted the observed scaffolding
effect of the UMC task progression, whose content design ideas
could be easily adapted in any classroom, even without support
from Crescendo.

Immediate feedback allowed students to progress indepen-
dently.

In both the camp and the CSO homework activities, we observed that
students were able to progress independently through Crescendo
tasks, with most students able to finish the tasks within the given
time period, receiving minimal help from the instructors.

The instructors also welcomed Crescendo, as it allowed them
to act as facilitators of knowledge as students progressed indepen-
dently, rather than lecturers. The automated and immediate feed-
back provided by Crescendo could be useful to reduce the grading
burden on instructors, and could also help new, in-service program-
ming teachers who are still transitioning from a non-programming
background to more accurately assess students” work.

7 LESSONS LEARNED

Throughout the experience, we found some deficiency inside the
system, that has cost students’ struggle and confusion.

When providing starter code, it is important to distinguish
code that should be modified from code that should not.
The starter code we provided to the students was designed to be
fully modifiable. But that flexibility caused some students to overly
focus on modifying the starter code, making them feel frustrated
when they broke working starter code. In the future, the system
should distinguish between code that should be modified and code
that should not, for example, by fixing the starter blocks, and only
allowing the blocks that can be modified to be draggable.

When students work at their own pace, some students may
get left behind.

Another deficiency of the system we found in our middle school
classroom is that students accumulated bigger and bigger differ-
ences in the time they took to complete Crescendo tasks. Although
faster students were provided with non-Crescendo-based bonus
tasks to be worked on after they finished the required Crescendo
tasks, slower students still started to feel anxious when they were
left behind. In the future, we want to make Crescendo support pair
programming, add more bonus tasks to students, as well as give
students more encouragement and positive feedback in the future
task design, to help lower-performing students feel more motivated
to progress inside the system.

8 CONCLUSION

This paper demonstrated the design and deployment of Crescendo,
an initial attempt towards combining the benefits of Novice Pro-
gramming Environments with Drill and Practice Systems. Adding
the Use-Modify-Create task progression and Parsons problems on
top of it, our case study shows Crescendo particularly effective
in leading students into independent, motivating, and rewarding
programming experience. Our future work will include adding
more intelligent and adaptive elements to Crescendo, providing
more personalized support to each individual student, as well as
instructor-oriented features to help quickly create engaging and
meaningful content.

REFERENCES

(1]

(1]

[12]

[13

=
it

[15]

[16]

[17

[18]

=
o

[20]

[21]

[22

[23]

Bita Akram, Wookhee Min, Eric N Wiebe, Bradford W Mott, Kristy Boyer, and
James C Lester. 2018. Improving Stealth Assessment in Game-based Learning
with LSTM-based Analytics. Proceedings of the 11th International Conference on
Educational Data Mining (2018).

Owen Astrachan and Amy Briggs. 2012. The CS principles project. ACM Inroads
3,2 (2012), 38-42.

Michael Ball. 2018. Lambda: An Autograder for snap. Technical Report. Technical
Report. Electrical Engineering and Computer Sciences University of California
at Berkeley.

Austin Cory Bart, Javier Tibau, Eli Tilevich, Clifford A Shaffer, and Dennis Ka-
fura. 2017. Blockpy: An open access data-science environment for introductory
programmers. Computer 50, 5 (2017), 18-26.

Stephen Cooper, Wanda Dann, and Randy Pausch. 2000. Alice: a 3-D tool for
introductory programming concepts. In Journal of Computing Sciences in Colleges,
Vol. 15. Consortium for Computing Sciences in Colleges, 107-116.

Albert T Corbett. 2000. Cognitive Mastery Learning in the ACT Programming
Tutor. Technical Report. 1-6 pages. http://www.aaai.org/Papers/Symposia/
Spring/2000/SS-00-01/5500-01-007.pdf

Wanda Dann, Dennis Cosgrove, Don Slater, Dave Culyba, and Steve Cooper. 2012.
Mediated transfer: Alice 3 to Java.. In SIGCSE, Vol. 12. Citeseer, 141-146.
Sayamindu Dasgupta, William Hale, Andrés Monroy-Hernandez, and Ben-
jamin Mako Hill. 2016. Remixing as a pathway to computational thinking. In
Proceedings of the 19th ACM Conference on Computer-Supported Cooperative Work
& Social Computing. ACM, 1438-1449.

Stephen H Edwards and Krishnan Panamalai Murali. 2017. CodeWorkout: short
programming exercises with built-in data collection. In Proceedings of the 2017
ACM Conference on Innovation and Technology in Computer Science Education.
ACM, 188-193.

Shelly Engelman, Brian Magerko, Tom McKlin, Morgan Miller, Doug Edwards,
and Jason Freeman. 2017. Creativity in Authentic STEAM Education with EarS-
ketch. In Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer
Science Education. ACM, 183-188.

Michael L. Epstein, Amber D. Lazarus, Tammy B. Calvano, Kelly A. Matthews,
Rachel A. Hendel, Beth B. Epstein, and Gary M. Brosvic. 2002. Immediate Feed-
back Assessment Technique Promotes Learning and Corrects Inaccurate first
Responses. The Psychological Record 52, 2 (01 Apr 2002), 187-201.

Barbara J Ericson, James D Foley, and Jochen Rick. 2018. Evaluating the Efficiency
and Effectiveness of Adaptive Parsons Problems. In Proceedings of the 2018 ACM
Conference on International Computing Education Research. ACM, 60-68.
Barbara J. Ericson, Mark J. Guzdial, and Briana B. Morrison. 2015. Analysis of
Interactive Features Designed to Enhance Learning in an Ebook. Proceedings of
the eleventh annual International Conference on International Computing Education
Research - ICER °15 (2015), 169-178. https://doi.org/10.1145/2787622.2787731
Barbara J Ericson, Lauren E Margulieux, and Jochen Rick. 2017. Solving parsons
problems versus fixing and writing code. In Proceedings of the 17th Koli Calling
Conference on Computing Education Research. ACM, 20-29.

Barbara J Ericson, Kantwon Rogers, Miranda Parker, Briana Morrison, and Mark
Guzdial. 2016. Identifying design principles for CS teacher Ebooks through
design-based research. In Proceedings of the 2016 ACM Conference on International
Computing Education Research. ACM, 191-200.

Dan Garcia, Brian Harvey, and Tiffany Barnes. 2015. The beauty and joy of
computing. ACM Inroads 6, 4 (2015), 71-79.

Stuart Garner. 2007. An Exploration of How a Technology-Facilitated Part-
Complete Solution Method Supports the Learning of Computer Programming,.
Issues in Informing Science and Information Technology 4 (2007), 491-501.
Joanna Goode, Gail Chapman, and Jane Margolis. 2012. Beyond curriculum: the
exploring computer science program. ACM Inroads 3, 2 (2012), 47-53.

Luke Gusukuma, Virginia Tech, Austin Cory Bart, Virginia Tech, Dennis Kafura,
Virginia Tech, Jeremy Ernst, and Virginia Tech. 2018. Misconception-Driven
Feedback : Results from an Experimental Study. 1 (2018), 160-168.

Kyle J. Harms, Noah Rowlett, and Caitlin Kelleher. 2015. Enabling indepen-
dent learning of programming concepts through programming completion
puzzles. Proceedings of IEEE Symposium on Visual Languages and Human-
Centric Computing, VL/HCC 2015-Decem, October 2015 (2015), 271-279. https:
//doi.org/10.1109/VLHCC.2015.7357226

David Hovemeyer and Jaime Spacco. 2013. CloudCoder: a web-based program-
ming exercise system. Journal of Computing Sciences in Colleges 28, 3 (2013),
30-30.

Michael Hull, Dan Powell, and Ewan Klein. 2011. Infandango: automated grading
for student programming. (2011).

Prapti Khawas, Peeratham Techapalokul, and Eli Tilevich. [n. d.]. Unmixing
Remixes: The How and Why of Not Starting Projects from Scratch. ([n. d.]).

[24

[25

[26

~
=

[28

[29

(30]

@
=

(32]

[36

[37

[38

W
20,

[40

(41

[42

[43]

[44]

[45

Amruth N Kumar. 2006. Explanation of step-by-step execution as feedback
for problems on program analysis, and its generation in model-based problem-
solving tutors. Technology, Instruction, Cognition and Learning (TICL) Journal 4,
1(2006).

Irﬁne Lie, Fred Martin, Jill Denner, Bob Coulter, Walter Allan, Jeri Erickson, Joyce
Malyn-Smith, and Linda Werner. 2011. Computational thinking for youth in
practice. Acm Inroads 2, 1 (2011), 32-37.

Michael J Lee and Andrew J Ko. 2015. Comparing the effectiveness of online
learning approaches on CS1 learning outcomes. In Proceedings of the Eleventh
Annual International Conference on International Computing Education Research.
ACM, 237-246.

Nicholas Lytle, Veronica Cateté, Danielle Boulden, Yihuan Dong, Jennifer Houch-
ins, Alexandra Milliken, Amy Isvik, Dolly Bounajim, Eric Wiebe, and Tiffany
Barnes. 2019. Use, Modify, Create: Comparing Computational Thinking Lesson
Progressions for STEM Classes. In Proceedings of the 2019 ACM Conference on
Innovation and Technology in Computer Science Education. ACM, 395-401.
Nicholas Lytle, Mark Floryan, and Tiffany Barnes. 2019. Effects of a Pathfinding
Program Visualization on Algorithm Development. In Proceedings of the 50th
ACM Technical Symposium on Computer Science Education. ACM, 225-231.
Brian Magerko, Jason Freeman, Tom McKlin, Scott McCoid, Tom Jenkins, and
Elise Livingston. 2013. Tackling engagement in computing with computational
music remixing. In Proceeding of the 44th ACM technical symposium on Computer
science education. ACM, 657-662.

John H Maloney, Kylie Peppler, Yasmin Kafai, Mitchel Resnick, and Natalie Rusk.
2008. Programming by choice: urban youth learning programming with scratch.
Vol. 40. ACM.

Orni Meerbaum-Salant, Michal Armoni, and Mordechai Ben-Ari. 2011. Habits of
programming in scratch. ITiCSE’11 - Proceedings of the 16th Annual Conference
on Innovation and Technology in Computer Science (2011), 168-172. https://doi.
0rg/10.1145/1999747.1999796

John C Nesbit, Olusola O Adesope, Qing Liu, and Wenting Ma. 2014. How
Effective are Intelligent Tutoring Systems in Computer Science Education?. In
2014 IEEE 14th International Conference on Advanced Learning Technologies. IEEE,
99-103.

Nick Parlante. 2019. CodingBat. Retrieved from ttps://codingbat.com/java.
Dale Parsons and Patricia Haden. 2006. Parson’s programming puzzles: a fun and
effective learning tool for first programming courses. In Proceedings of the 8th
Australasian Conference on Computing Education-Volume 52. Australian Computer
Society, Inc., 157-163.

Shaileen Crawford Pokress and José Juan Dominguez Veiga. 2013. MIT App
Inventor: Enabling personal mobile computing. arXiv preprint arXiv:1310.2830
(2013).

Thomas W Price and Tiffany Barnes. 2015. Comparing textual and block interfaces
in a novice programming environment. In Proceedings of the eleventh annual
International Conference on International Computing Education Research. ACM,
91-99.

Thomas W Price, Yihuan Dong, and Dragan Lipovac. 2017. iSnap: towards
intelligent tutoring in novice programming environments. In Proceedings of the
2017 ACM SIGCSE Technical Symposium on Computer Science Education. ACM,
483-488.

Mitchel Resnick, John Maloney, Andrés Monroy-Hernandez, Natalie Rusk, Evelyn
Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian
Silverman, et al. 2009. Scratch: programming for all. Commun. ACM 52, 11 (2009),
60-67.

Kelly Rivers and Kenneth R. Koedinger. 2017. Data-Driven Hint Generation in
Vast Solution Spaces: a Self-Improving Python Programming Tutor. International
Journal of Artificial Intelligence in Education 27, 1 (2017), 37-64. http://link.
springer.com/10.1007/s40593-015-0070-z

Kelli Taylor and Doug Rohrer. 2010. The effects of interleaved practice. Applied
Cognitive Psychology 24, 6 (2010), 837-848.

Kurt Vanlehn. 2006. The Behavior of Tutoring Systems. Int. J. Artif. Intell. Ed. 16,
3 (Aug. 2006), 227-265. http://dl.acm.org/citation.cfm?id=1435351.1435353

Lev Vygotsky. 1978. Interaction between learning and development. Readings on
the development of children 23, 3 (1978), 34-41.

David Weintrop and Uri Wilensky. 2017. Comparing block-based and text-based
programming in high school computer science classrooms. ACM Transactions on
Computing Education (TOCE) 18, 1 (2017), 3.

Rui Zhi, Min Chi, Tiffany Barnes, and Thomas W Price. 2019. Evaluating the
Effectiveness of Parsons Problems for Block-based Programming. In Proceedings
of the 2019 ACM Conference on International Computing Education Research. ACM,
51-59.

Rui Zhi, Nicholas Lytle, and Thomas W Price. 2018. Exploring Instructional
Support Design in an Educational Game for K-12 Computing Education. In
Proceedings of the 49th ACM Technical Symposium on Computer Science Education.
ACM, 747-752.

http://www.aaai.org/Papers/Symposia/Spring/2000/SS-00-01/SS00-01-007.pdf
http://www.aaai.org/Papers/Symposia/Spring/2000/SS-00-01/SS00-01-007.pdf
https://doi.org/10.1145/2787622.2787731
https://doi.org/10.1109/VLHCC.2015.7357226
https://doi.org/10.1109/VLHCC.2015.7357226
https://doi.org/10.1145/1999747.1999796
https://doi.org/10.1145/1999747.1999796
ttps://codingbat.com/java
http://link.springer.com/10.1007/s40593-015-0070-z
http://link.springer.com/10.1007/s40593-015-0070-z
http://dl.acm.org/citation.cfm?id=1435351.1435353

	Abstract
	1 Introduction
	2 Related Work
	3 Crescendo System
	4 Crescendo Content Design
	5 Use Cases
	5.1 Summer Camp
	5.2 CS0 Course Homework
	5.3 Findings and Observations

	6 Discussion and Implications
	7 Lessons Learned
	8 Conclusion
	References

