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ABSTRACT
Students often get stuck when programming independently, and
need help to progress. Existing, automated feedback can help stu-
dents progress, but it is unclear whether it ultimately leads to learn-
ing. We present Step Tutor, which helps struggling students during
programming by presenting them with relevant, step-by-step ex-
amples. The goal of Step Tutor is to help students progress, and
engage them in comparison, reflection, and learning. When a stu-
dent requests help, Step Tutor adaptively selects an example to
demonstrate the next meaningful step in the solution. It engages
the student in comparing “before” and “after” code snapshots, and
their corresponding visual output, and guides them to reflect on
the changes. Step Tutor is a novel form of help that combines effec-
tive aspects of existing support features, such as hints and Worked
Examples, to help students both progress and learn. To understand
how students use Step Tutor, we asked nine undergraduate students
to complete two programming tasks, with its help, and interviewed
them about their experience. We present our qualitative analysis of
students’ experience, which shows us why and how they seek help
from Step Tutor, and Step Tutor’s affordances. These initial results
suggest that students perceived that Step Tutor accomplished its
goals of helping them to progress and learn.
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1 INTRODUCTION
Students get stuck in many ways while programming [29], leading
to frustration [23]. Ideally, a student can ask for instructor help,
but this may be difficult in today’s growing CS classrooms [4],
where instructor availability is limited. And the student may see
asking for instructor help as a threat to their competence and inde-
pendence [9]. To solve this problem, researchers have developed
various kinds of automated, adaptive programming feedback to help
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students [14, 15, 22, 36]. Like instructor feedback, adaptive feedback
is context-dependent and personalized to address students’ current
code. Unlike instructor feedback, adaptive feedback is also scalable:
it can be generated automatically using data-driven approaches
(e.g., [36, 41]). This feedback can reduce teacher workload, and does
not pose a social threat to students.

Adaptive feedback takes many forms, such as highlighting possi-
bly erroneous code [15, 36], reporting completed and uncompleted
objectives [50], and correcting likely misconceptions [22]. Perhaps
the most common form of adaptive feedback is on-demand, next-
step hints, which suggest a small change a student can make to
progress or fix an error [14, 37, 41]. These hints can help students
progress when stuck [37, 38], and sometimes achieve better learn-
ing [14], especially when students engage in self-explanation of the
hint [33].

However, next-step hints also have limitations: they present a
single edit, with little context. The hints may be difficult to interpret
or fail to address students’ immediate goals, leading students to
ignore or avoid them [38, 39]. They do not always lead to learning
[41], and students can abuse the help to complete the problem
without effort [3, 30]. This suggests a need to design improved forms
of adaptive feedback, that offer context, reflection and learning.

In this paper, we present Step Tutor, an extension of the Snap! block-
based programming environment, which adds on-demand, example-
based feedback. The goal of Step Tutor is 1) to help struggling
students progress by demonstrating a correct solution step, and
2) to help them learn why the step works and how to apply it in
the future. It does so by demonstrating an example step from the
current problem, allowing the student to compare and run code
representing before and after the step is completed, and reflect
on the difference. Step Tutor incorporates prior work on Worked
Examples, which are an effective learning support [46]. It shows
examples step-by-step, to support students during problem-solving.
By combining the immediate usefulness of next-step hints and the
learning effectiveness of Worked Examples, Step Tutor aims to help
struggling students progress, and guide them to explore and reflect
on its suggested changes, so they can learn to apply it in the future.

To understand how students use Step Tutor, we asked nine un-
dergraduate students from introductory programming classes to
use it to solve two programming problems. We conducted inter-
views with these students after each problem, and analyzed their
responses using thematic analysis [7]. Our results revealed diverse
needs and activities students had using the system. They also pre-
sented rich data on students’ experience with Step Tutor, showing
various help-seeking [2] and sense-making [1] behaviors that may
help students progress and learn.
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2 RELATEDWORK
Next-step hint and its limitations in promoting learning:

Hints have been traditionally valued in education theory as
a tutorial tactic, which provides students with the information
needed to progress or prompts them to reflect on their knowl-
edge and problem-solving status [24]. Adaptive help systems com-
monly use on-demand, next-step hints that suggest the next step
a student should take [2, 14, 37, 41]. In the domain of program-
ming, next-step hints can help students program more efficiently.
For example, undergraduate students spent significantly less time
completing Lisp programming tasks, with three different forms of
next-step hints, compared to those without [14]. Additionally, in
block-based Snap! programming, next-step hints with explanations
or self-explanation prompts allowed crowd-workers to complete
more programming objectives in the same amount of time, than
those without hints [33]. But these next-step hints rarely lead to
improved learning, for example, as Rivers found in an evaluation of
the ITAP python tutor [41]. This missed learning can occur because
hints fail to address students’ needs [38, 39], for hints show only
one edit at a time, and may lack context and details needed to inter-
pret the suggestion [34]. Additionally, students often misuse hints
(e.g., hint abuse) [2], allowing them to progress without understand-
ing each step. Aleven et al. reviewed hints from various domains,
and concluded that learning from hints only happens occasionally,
under certain circumstances, and its effect is small [2].

How do students learn programming strategies? Schön explained
the cognitive process of learning procedural knowledge [2] through
reflection-in-action, emphasizing that new knowledge is gained
through self-reflection, during which the learner repeatedly ques-
tions herself while actively working and testing on the learning ma-
terial [43]. This emphasis on self-reflection and activity is echoed
by several learning theories, such as the sense-making process
highlighted by the KLI framework [1]), and the emphasis on active
interaction with the learning material suggested by the ICAP frame-
work [10]. For a next-step hint to offer students meaningful content
to promote sense-making and self-reflection, its “next step” may
involve more than one single edit. And for the next-step hint to en-
able an active learning experience, its feedback window should go
beyond just allowing students to passively view the content. These
indicate ways to improve upon next-step hints, to offer feedback
that gives a clear step, and enables students to interact with the
feedback and reflect on why and how the step works.
Worked Examples:

Worked Examples (WEs) are a form of instructional support,
which give students a demonstration of how to solve a problem
[11]. The effectiveness of WEs is grounded in Cognitive Load The-
ory, which argues that learners have a finite amount of mental
resources during problem-solving (called cognitive load), and when
problems impose an unnecessary burden on those resources (in-
trinsic load), the student has fewer resources left for processing
and learning the material (germane load) [45]. WEs help learning
by providing support for “borrowing” knowledge, reducing the
unnecessary intrinsic load [46]. Unlike next-step hints, WEs are
traditionally offered in lieu of problem-solving, usually “before” or
“after” a student solves another related programming task [8, 48].
WEs have been implemented in a few programming environments,

such as WebEx [8]. With the help of WEs, students can learn the
problem-solving schema [17] and transfer it to another task [48].
For example, Trafton et al. evaluated 40 undergraduate students’
post-test scores after programming in BATBook, a Lisp program-
ming learning environment, and found that those with alternating
WE and problem-solving (PS) pairs performed better than those
with only PS pairs [48].
Worked Examples during problem-solving:

WEs are an effective learning support, but students still need
help during programming when they are stuck. Looking Glass pro-
vides students with annotatedWEs from another similar task during
block-based programming [25, 26]. However, learners had difficul-
ties understanding these examples in Looking Glass, encountering
“example comprehension hurdles” while trying to connect example
code to their own code [25, 26].

Novice students are usually not able to spontaneously transfer
knowledge they learn from one problem to another isomorphic
problem [19], so they can benefit more if WEs are offered from the
same programming problem. Peer Code Helper offers such step-by-
step WEs from the same task, during block-based programming
[53]. An evaluation on 22 high school novice students showed that
students using these WEs solved tasks quicker than those without,
without hindering their learning [53]. The FIT Java Tutor [21] pro-
vides such step-by-step WEs for Java programming. Investigation
on five students’ programming experience showed that students
occasionally followed the feedback and improved their program
over time [20]. But, example steps in these programming problems
are non-adaptive [53], or coarse-grained [21, 53], and lack the nec-
essary scaffolding for students to make sense of them. In a study
evaluating 23 students’ experience with step-by-step WEs offered
during Java programming, students barely followed the examples,
reporting them being “unspecific and misleading” [12]. Therefore,
more work is needed to design new forms of example feedback,
to promote reflection through fine-grained example steps, and to
enable progression through an interactive experience [13].

3 STEP TUTOR
Step Tutor is an extension of the Snap! programming environ-
ment. Its goal is to help students progress and learn when stuck,
by teaching them a meaningful step when requested. Step Tutor
helps students by showing them a concrete example of how the step
could be completed, including both the changes in the code and
the corresponding changes in the program’s output, and prompt-
ing the student to reflect on these differences. In our context, an
“example step” should be self-contained, and large enough to mean-
ingfully change the program’s output, but small enough to be easily
digested. This feedback serves the dual purpose of helping the stu-
dent: 1) progress when stuck (as with a hint), and also 2) critically
engage with and reflect on the example code to learn generalizable
programming concepts. We designed Step Tutor to achieve this
goal through a feedback window that facilitates comparison, code
running, and self-explanation.

Because Step Tutor extends Snap! , instructors can easily inte-
grate it into widely-used Snap! programming curricula (e.g., the
Beauty and Joy of Computing [16]). Although Step Tutor currently
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Figure 1: An example step given by Step Tutor, which in-
cludes a Code Comparison Panel, two Click-and-Run But-
tons, and a Self-Explanation Prompt.

only supports Snap!-based programming, the design and algorithm
we used to create Step Tutor and its feedback is language-agnostic.

3.1 The Step Tutor Feedback Window
Consider a student who gets stuck when working on a homework
problem in Snap! , perhaps due to a bug in her code, a misconcep-
tion, or uncertainty about how to proceed. Rather than waiting
for office hours or a response on a forum, the student can click on
the “Show Example” button that’s displayed on the programming
interface to ask for help. Step Tutor added this “Show Example”
button to the original Snap! interface to remind students about this
added option to view a step. It flashes every 90 seconds, inspired
by prior work [33], which suggests that students can become too
engaged in solving a challenging problem to notice or act on their
own need for help [38]. When the student clicks on the button,
she sees the Step Tutor feedback window (Figure 1), which shows
a carefully-selected example step (explained in Section 3.2). The
feedback window guides the student through learning the step in
three ways, designed to promote deliberate comparison and self-
reflection, to help students learn the step, and learn how to apply it
again in the future [44]:
Comparing and running the code: At the top of the feedback
window, the student sees two code snapshots, which together give
a meaningful, interpretable step that a student can take to proceed
towards the solution, selected by the example selection algorithm
in Section 3.2. The left “before” code is similar to the student’s code,
representing “before” the step is completed, and the right “end” code
shows the changes needed to complete the step. The student can
inspect the example step by comparing the left and right code. We
want to encourage learning the step through comparison, because
prior work in programming education suggests that comparison is
a powerful way for a student to learn from examples and generalize

Figure 2: Three possible solution paths for Task 2, made up
of three example steps: (a)MakeRow: drawing a row of trian-
gles; (b) TriangleToHill: changing the triangle to a stripped
hill; (c) AddColor: adding color for each triangle.

domain principles [17, 35, 40]. The student is also encouraged to run
the code to understand the step. The click-and-run feature prompts
students to actively engage with and reflect on the example code,
which is an essential element of active learning defined by the ICAP
framework [10].
Writing self-explanation: After the student has viewed an ex-
ample step, she can answer the self-explanation prompt: “In your
own words, describe the difference between the two examples”. Al-
though answering the prompt takes time, prior work suggests that
self-explanation is critical for learning from feedback [5, 34, 44, 47],
and such self-explanation does not emerge spontaneously without
carefully-designed prompts [2, 18]. After writing self-explanation,
she can either close the Step Tutor feedback window, or leave it
open as a reference when she continues to write code.

When the student continues to make progress, but gets stuck
again, she can use the “Show Example” button to ask for another
help, seeing a new example step adapted to her current code. In-
structors could easily add a limit of total request to prevent help
abuse [2]. To explore a student’s natural use of the system, we did
not impose the limit in our study. Additionally, even if a student
does abuse help by repeatedly asking for examples, she has still
experienced a step-by-step Worked Example, which prior work
shows leads to more efficient learning outcomes than solving the
problem from scratch [48].

3.2 The Example Selection Algorithm
An important feature of Step Tutor is that it adaptively selects exam-
ples, tailoring them to a student’s current code. It does so through
an example selection algorithm, which searches for an example step.
To help students achieve optimal learning, the example step should
be one that the student has not completed but is ready to complete
with some help – meaning one in the student’s Zone of Proximal
Development [49]. Our approach extends our prior work [51], and
consists of the following steps:
An instructor creates a database of example steps: An instruc-
tor can first create a set of example steps for a problem, each consist-
ing of “before” and “after” code (as shown in Figure 1), representing
one meaningful step in completing the solution which ideally alters
the program’s output. In many problems, solution steps can be
completed in various orders [52]. As is shown in Figure 2, there are
multiple ways to reach the solution. To illustrate each possible path
to the solution, it is helpful to author an example pair (i.e., the “be-
fore” code and the “after” code) for each transition (i.e., each arrow
in Figure 2). While in this work, we author these steps by hand, our
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prior work suggests they can also be generated automatically from
student data, matching the quality of expert examples [51].
The algorithm selects “before” and “after” code snapshots:
When a student requests an example step, the selection algorithm
attempts to select one with “before” code very similar to the stu-
dent’s, so it is easy to understand. The algorithm transfers students’
code to an abstract syntax tree (AST), and then calculates the dis-
tance between the student’s code AST and the “before” code AST of
each of the expert examples using the SourceCheck code distance
function [36]. Among the two examples that have the smallest dis-
tance to the student’s current code, we select the example with the
fewest completed steps, so err on the side of giving away less of the
solution. The algorithm then attempts to select “after” code that
demonstrates a step the student can understand. Since all selected
example pairs will complete at least one step beyond the student’s
code, the algorithm selects the example step with “after” code clos-
est to the students’ current code, which is most likely to be the step
the student is currently working on.

4 USER STUDY
Before deploying Step Tutor in a classroom, we wanted to collect
formative data on how and why students used Step Tutor, to gain a
better understanding of the strengths and weaknesses of the system,
and whether it is likely to achieve its goals of supporting progress
and learning. So, we recruited a small group of students to use Step
Tutor while solving two programming problems, and conducted
interviews to better understand their experiences.
Participants: We recruited nine undergraduate students from two
introductory programming courses in a large, public university
in the Southeast United States. In both classes, students had been
taught Snap! programming for one to two months. The students
included five males and four females, with two identifying as His-
panic/Latino, three as Asian, three as White, and one undisclosed.
Each student received a $25 gift card as compensation at the end of
the study.
Procedure: Students completed the procedures one at a time. To
start with, they read a short tutorial on Snap! to refresh their memo-
ries. They were then given up to 30 minutes to complete each of two
programming tasks: Stairway and Row of Hills (the latter shown
in Figure 2). Both tasks required students to use variables, loops,
and nested loops. These tasks were appropriate for our study, be-
cause they contain decomposable steps, visual output, and concepts
that were beyond what students learned in their coursework (e.g.,
three nested loops). The researcher did not offer help to students
except to confirm when the programming task was completed. Af-
ter completing each programming task, the researcher conducted a
semi-structured interview to ask about the student’s experience in
the task. Each of the two interview sessions lasted between five to
15 minutes.

Each interview includes a retrospective think-aloud protocol [32],
during which we asked students to watch the video we recorded
when they interacted with Step Tutor. While watching the video,
they were asked to explain their thoughts and activities. The in-
terviewer also asked students’ general experience with Step Tutor.
Since one of the goals of Step Tutor was to provide more help-
ful feedback than next-step hints, and students had had access to

next-step hints [37] in their classrooms, we also included ques-
tions asking students to compare Step Tutor to next-step hints. To
encourage impartial feedback, they were not informed that Step
Tutor was designed by our research team, and the questions were
designed to evoke open-ended responses (e.g., “Here’s an example
you have requested; how do you feel about it?”).

5 ANALYSIS & RESULTS
Rather than a summative evaluation, we conducted a formative
evaluation to understand students’ experience with Step Tutor. As
a pilot study, we used qualitative analysis to capture the various
ways students interacted with Step Tutor. For this initial analysis,
We focused on analyzing the interview data, because it offers a
comprehensive understanding of students’ experience.

5.1 Thematic Analysis
Weused thematic analysis to summarize and identify central themes
from our interviews [7]. Using the six-phase thematic analysis
method outlined by Braun and Clarke [7], two researchers each
independently read the transcripts thoroughly (Phase 1), open-
coded conversation sentences with labels of interest, then met to
discuss and refine the codes, producing 125 initial codes (Phase 2).
The two researchers then iteratively analyzed and categorized codes
to generate themes, i.e., general ideas that emerged in codes (Phase
3). They then revisited the original data to refine the initial themes
into main themes, each including several sub-themes (Phase 4). The
two researchers then discussed and defined the themes (Phase 5).
We present the results (Phase 6) in Section 5.2.

5.2 Findings
Our thematic analysis has revealed three main themes: why I chose
to use or not use Step Tutor (WHY); how I used Step Tutor (HOW);
what affordances Step Tutor offers (WHAT) (Table 1). During the
Phase 4 of our thematic analysis, when we refined initial themes
into these three main themes and their sub-themes, we revisited the
data and found a meaningful correspondence between the WHY,
HOW, WHAT, and the frequency students asked for examples. This
correspondence revealed three groups of students, with different
levels of reliance on examples: high-use group (H - P1, P3, P6; 2+
per task) 1;medium-use group (M - P4, P8; 0-2 per task), and low-
use group (L - P2, P5, P7, P9; 0-1 per task). Rather than providing
a definitive categorization of student behaviors, we used these
groups to draw descriptive connections between the WHY, HOW,
and WHAT of each individual student. Table 1 provides the count
of students in each group who discussed each theme.

5.2.1 WHY I chose to use or not use Step Tutor? Students’ discus-
sions of “WHY” can tell us how we may adjust our design goal
to align with students’ expectations. Students discussed high-level
goals, such as affective and achievement goals, that are not problem-
specific, and low-level goals, that describe specific outcomes students
want in relation to their current code. Here we focus on presenting
high-level goals, since low-level goals align strongly with HOW
students used Step Tutor, discussed in Section 5.2.2.

1high-use group includes participants P1, P3 and P6. Each of them were observed to
have requested at least two example steps per task.
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Themes H (3) M (2) L (4) Total
1. WHY I chose to use or not use Step Tutor
1.1. High-level goals
1.1.1. Progress 3 2 4 9
1.1.2. Assurance 1 0 0 1
1.1.3. Expedience 1 0 0 1
1.1.4. Independence 1 2 4 7
1.2. Low-level goals
1.2.1. Find next step 3 0 0 3
1.2.2. Find how to do a step 1 2 1 4
1.2.3. Fix a problem in my code 1 0 4 5
2. HOW I used Step Tutor
2.1. Run example code 3 1 3 8
2.2. Comparing example code 3 2 2 7
2.3. Write self-explanation 2 1 2 5
2.4. Locate the change 0 0 4 4
2.5. Copy example code 1 0 0 1
3. WHAT affordances Step Tutor offers
3.1. Comparison with hints 3 2 3 8
3.2. Roadmapping
3.2.1. Connect the roadmap 2 0 0 2
3.2.2. Roadmap transfer 1 0 0 1

Table 1: Themes discussed by students from high-use (H),
medium-use (M), and low-use (L) groups.

High-level goals. A primary high-level motivation expressed by
all students was the desire to progress in the assignment. When
asked why they asked for an example, one student stated "I don’t
wanna like, keep getting stuck on this one little piece"[P1/H] 2. This
aligns with one of the primary goals of Step Tutor: to help students
progress.We also saw othermotivations that we had not anticipated.
For example, one student noted her desire for assurance: "students
like me who are not like pretty confident in programming, having an
example makes us feel . . . like, this is how you need to do it."[P3/H].
Step Tutor may address this need for assurance with the “before”
code snapshot, which allows them to confirm the correctness of
what they have already written. Another student’s motivation for
using Step Tutor was an expedience goal [28], to reduce their own
effort: "coz it’s easy I guess, it just shows you what to do?"[P6/H].
These two goals were unique among the high-use group, who may
have lower self-efficacy [6], suggesting that Step Tutor needs to
address their particular needs for reassurance, and discourage ex-
pedient help use. Students also expressed motivations for not using
Step Tutor, such as a desire for independence. As in prior work
[38], students avoided using help to maintain independence: "I fig-
ure things out on my own, so I learn more thoroughly."[P8/M]. But
unlike prior work, another student noted that Step Tutor actually
gave her a sense of having independence, because it allows students
to continue working without the need for other forms of help: "even
though [Step Tutor is] helping, they are doing it independently, they
are doing it by themselves, instead of calling [teaching assistant] every
other time."[P3/H].

2A quotation from participant P1 within the high-use (H) group.

5.2.2 HOW I used Step Tutor? We collected the “HOW” theme
through the retrospective think-aloud protocols during the inter-
views. We found various ways students interacted with Step Tutor,
including those we intended (run, compare, self-explain), and some
we did not:
Run, compare, and self-explain. Students discussed interleaved
activities of running, comparing and self-explain the examples,
which aligned with our design goals. Students found running the
examples to be useful, since it shows "the difference between these
two codes"[P1/H], and how it leads to "the difference in the out-
puts."[P1/H]. Then, seeing the output triggers them to think more:
"the output of the examples. . . make me wonder for a sec like, why it
gives me example [sic] like that."[P1/H]. Students also noted engag-
ing in comparison, not only by running the left and right example
snapshot to "see what’s going on"[P4/M], but also by comparing their
own code with the left or right code snapshot to see if their code
"matches up"[P4/M] with the example code. We found students had
mixed feelings about writing self-explanation, as in prior work [33].
Some expressed that self-explanation was distracting: "when I can
look at what’s going on, and understand, [writing self-explanation]
kind of gets in the way."[P5/L]. In contrast, other students expressed
that it helped them reflect and think more: "if you write it down
as a reflection, . . . it would just get into your head that there were
these differences and that’s what I have to do next."[P9/L]. One stu-
dent also appreciated the chance for expression, explaining that
the self-explanation prompt "gives a place where I can explain what
I’m feeling"[P3/H]. The interleaved activities of running, compar-
ing, and reflection show that our tool offers an active and engaged
learning experience, and suggest us to design the self-explanation
prompts carefully, to help students without frustrating them.
Locate the change and copy example code.We noticed the low-
use group generally did not run the example code "because I felt
like I already knew what [the snapshots] are going to do."[P5/L].
Instead, they used the example code to locate where they needed to
update their code. For example, a student who asked for an example
to find how to use a “turn” block explained: "I look for whichever
one that already have [sic] a turn degrees."[P5/L]. These students
also expressed their low-level goals as only using the example
steps when they knew what to do next, but were unclear how, or
needed to fix a problem with their code. We also observed another
behavior: copying the example code, which all three high-use group
students employed (based on our observations). These students
also expressed all three different low-level goals, including to “find
the next step”, indicating that they were unclear about what they
wanted the program to do [29]. While two students seemed to have
interleaved the code-copying experience with running, comparing,
and critically reflecting on the examples, one expressed "when I read
the example, I was just copying it."[P6/H], and critically commented
that it made him "think a lot less"[P6/H]. While this student seemed
to have abused Step Tutor’s help, suggesting a limitation of our tool,
we discuss the positive impact of example-copying for the other
two students below.

5.2.3 WHAT affordances Step Tutor offers? Other than the specific
interactions students experienced with Step Tutor, students also
expressed perceptions of Step Tutor as a whole.
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Comparison with hints. During the interviews, among eight of
our interviewees who recalled using next-step hints in class, five
preferred Step Tutor, one hints, and two didn’t express a strong
preference. Students commented that a "hint is like, no informa-
tion"[P6/H], and they "don’t really do anything"[P6/H] because they
tell "something I already know"[P1/H]. In contrast, they appreciated
the interpretability of Step Tutor - comparing to next-step hints, an
example step "gives the entire coding [sic]"[P3/H], and tells "how to
combine the things I already know"[P1/H]. They also appreciated the
demonstration offered by Step Tutor, since it "teaches better"[P6/H]
by "[showing] how the stuff runs"[P6/H]. But regarding the amount
of information that’s given, three students believed that next-step
hints have advantages over Step Tutor. They discussed that a hint
"doesn’t give me as much of the answer as the example does"[P5/L],
so it "makes you think more on your own"[P5/L], indicating that
students need more control over how much information they see.
Roadmapping. Unlike experience with one example step, the
“roadmapping” theme describes how the series of examples steps
together help students understand the high-level structure of the so-
lution: "I can see how the example [given] is... evolving, from one single
square to all these squares and then increase the thickness."[P1/H]. A
student in the high-use group expressed that the series of examples
in one task (e.g., the Step Tutor tutorial) helped them learn the task
structure: "in the example before, it was drawing one circle first, and
then... it was drawing many circles..."[P3/H]. She then was able to
apply this pattern to a subsequent task which used a similar solu-
tion structure: "I was expecting the same thing . . . "[P3/H], showing
an effort to transfer knowledge from one task to another.

6 DISCUSSION
We here compare students’ experience with Step Tutor with help-
seeking and learning behaviors highlighted by prior work, and
examine whether Step Tutor combines the benefits of promoting
progression offered by next-step hints, and the benefits of enabling
learning and transfer provided by Worked Examples.
Does Step Tutor help students progress?

Eight out of nine students successfully completed the tasks
within 30 minutes in our study. Like findings in students’ help-
seeking behaviors with next-step hints [1, 38], students actively
employed help-seeking as a problem-solving strategy to progress
when stuck [38], indicating Step Tutor may offer similar benefits to
next-step hints. Unlike challenges observed in students’ experience
with Worked Examples, such as difficulties in understanding exam-
ples [25], we found many students followed the steps suggested
by Step Tutor, which shows Step Tutor offers clear information for
students to trust the step [38], and use it to progress.
Does Step Tutor help students learn?

One concern instructorsmay have is that of “AssistanceDilemma”
[30] - Step Tutor may give away too much information, allowing
students to progress, but without understanding how, as in expedi-
ent help-seeking or help-abuse, problems commonly seen among
students’ interactions with next-step hints [3, 28, 42]. However,
unlike those next-step hints that were perceived as not addressing
their needs [38, 39], students described Step Tutor to offer clear
and interpretable information. We also saw that most students, in-
cluding two of the three students who copied examples, engaged

in running, comparing, and self-explaining, showing a deliberate
attempt to make sense of the step, which is critical for learning
[13, 31, 43]. Not only did we see reflection on individual examples,
but also on a larger problem structure. Even when a student copied
all the examples, she was able to connect the series of examples to
create a problem-solving schema [17], and was able to transfer this
schema to another task [19], indicating a learning process through
reflection-in-action [43].

We also saw that Step Tutor supports different levels of prior
knowledge. When a student is unclear about what to do next, she
takes a longer time to interact with an example, and uses vari-
ous activities to make sense of the example step, such as running,
comparing, copying the code, and reflecting on the step. When a
student only needs a quick debugging tip to move forward, she
simply searches through the example code and finds the change she
needs to make. This finding aligns with the expertise reversal effect
[27], indicating the more expertise one has, the less information
she needs when asking for help. We believe the variety of ways of
interactions in Step Tutor provides different students with tailored
support.

7 LIMITATIONS AND CONCLUSION
Our user study includes several limitations. 1) With only a small
sample of students and two short programming tasks, our study
may not generalize to other student groups. But instead of widely
gathering data to conclude the benefits of the system, we conducted
an in-depth analysis by closely analyzing each individual student’s
experience. 2) As an initial pilot study, our analysis did not measure
learning or progress quantitatively. Therefore, we cannot make
strong claims about our system’s ability to support progress and
learning. But, we collected rich data that depicts a variety of expe-
riences that informs us of Step Tutor’s affordances. We also discov-
ered limitations in the Step Tutor system itself. While no student
reported inherent deficiencies in the system, the different levels
of interactions with Step Tutor indicate that students can bring
different predispositions (e.g., prior knowledge, goal orientation,
programming preference) into their programming experience, and
thus should benefit from different levels of programming support.
While we were able to offer such personalization through choices of
interactions in Step Tutor, we should also create more personalized
and flexible forms of feedback to students in the future.

In conclusion, Step Tutor provides a combination of the imme-
diate relevance offered by next-step hints, as well as the learning
benefits provided by Worked Examples. Our user study shows the
wide variety of interactions students employed with Step Tutor, and
also suggests the need to personalize support for each individual
student.
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