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ABSTRACT

Programming environments such as Snap/, Scratch, and Processing
engage learners by allowing them to create programming artifacts
such as apps and games, with visual and interactive output. Learn-
ing programming with such a media-focused context has been
shown to increase retention and success rate. However, assessing
these visual, interactive projects requires time and laborious man-
ual effort, and it is therefore difficult to offer automated or real-time
feedback to students as they work. In this paper, we introduce
SNAPCHECK, a dynamic testing framework for Snap! that enables
instructors to author test cases with Condition-Action templates.
The goal of SNAPCHECK is to allow instructors or researchers to
author property-based test cases that can automatically assess stu-
dents’ interactive programs with high accuracy. Our evaluation of
SNAPCHECK on 162 code snapshots from a Pong game assignment
in an introductory programming course shows that our automated
testing framework achieves at least 98 % accuracy over all rubric
items, showing potentials to use SNAPCHECK for auto-grading and
providing formative feedback to students.
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1 INTRODUCTION

Visual, interactive programming projects, such as creating student-
designed apps and games, are widely used in many introductory
programming courses (e.g., [10, 13]). They encourage students to
pursue projects that produce a computational artifact that they can
interact with, and to express their ideas creatively, which has been
shown to motivate students [13]. Additionally, many popular block-
based programming environments, such as Scratch [16] and Snap!
[19], are specifically designed to create such visual, interactive
programs.
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One challenge to using visual, interactive programs in the class-
room is that the very properties that make them engaging also
make them difficult to assess automatically. While traditional in-
troductory programming tasks can usually be tested using simple
input/output pairs, visual, interactive programs are controlled by se-
quences of user inputs (e.g., key presses and mouse clicks), and their
output is based on the visual composition of sprites on a screen!,
making it difficult to write automated test cases. Not only does this
make it time consuming for instructors to assess these programs,
limiting the ability to scale up courses, it also precludes the use
of the automated, formative feedback found in many introductory
courses. Prior work addressed these problems by developing auto-
mated, functional tests for Scratch [29]. However, it has not been
extended to automated assessment for Snap! programs.

In this work, we introduce SNAPCHECK, an automated testing
framework for visual, interactive programs. We define how to au-
thor SNAPCHECK test cases with a domain-specific-language (DSL),
and describe how an instructor can use SNAPCHECK s user interface
to author test cases with Condition-Action templates that simulate
the interaction rules of a human tester when running a Snap! pro-
gram. We evaluated SNAPCHECK on 162 program snapshots and
final submissions from 42 students working on a programming
assignment. Our results suggest that SNAPCHECK can accurately
test these programs by providing at least 98 % accuracy on all rubric
items, showing that SNAPCHECK can be used by instructors to auto-
matically assess students’ visual, interactive programs in Snap!.

2 RELATED WORK

Automated Assessment. Effective feedback should be timely and
specific [25, 26]. However, in today’s growing-size CS classrooms [1],
traditional, manual assessment is usually insufficient for offering
timely feedback to all students; many K-12 in-service program-
ming instructors are in the process of transitioning from non-
programming backgrounds, and therefore lack proficiency in grad-
ing students’ assignments manually [9].

Automated assessment not only reduces instructors’ grading
efforts, but also allows students to receive automated feedback on
where they were correct or made mistakes on [8] in the middle
of programming. Unlike instructor feedback, automated feedback
can be easily propagated to all students having the same mistake,
allowing a larger group of students to benefit from receiving feed-
back. This feedback can take the form of success or failure of test
cases [8, 14, 30], highlighting erroneous code [7, 22], or identifying

LA sprite in Snap! is an object (such as in object-oriented programming) and can have
its own code (scripts), and variables.
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likely misconceptions [11]. Providing such immediate feedback has
been shown to engage and motivate students [17], improve their
learning outcomes [4], and does not pose social threat to students
[23].

To build automated assessment tools, researchers used two preva-
lent methods to analyze students’ programs: syntax-based static
analysis (e.g., [17, 21, 22, 30]), and functional program analysis, (e.g.,
[8, 14, 15, 20]), generated from dynamically running the program
rather than inspecting the structure of its code.

Syntax-Based Program Analysis. In block-based languages, many
students complete programming assignments by making apps,
games and simulations [10]. Because of the visual and interactive
output of these programs, it is challenging to perform functional
tests that checks correctness of procedures based on input-output
pairs in these programs (we discuss why in Section 3). Therefore,
many programming analysis approaches made use of syntax-based
program analysis to check students’ program structures based on
abstract syntax tree (AST) rules [2, 17, 30].

For example, Marwan et al. developed a data-driven syntax-based
autograder in Snap!, to provide real-time adaptive feedback, and
found that it increased students’ engagement with the program-
ming environment and intentions to persist in CS [17]. Crescendo
is a Snap/-based self-paced learning tool used syntax-based rules
to automatically grade rubric-like assignment requirements (e.g.,
draw a triangle) during programming. This rule-based syntax-based
analysis checks AST substructures to determine whether the code
satisfied specific programming requirements (e.g., is a “move” block
inside of a “do repeat” loop?). In the evaluation, they found that
students benefited from receiving immediate feedback, as shown
by high completion rates and fast task completion. However, such
syntax-based rules can be brittle and difficult to author, and may
lead to assessment errors when not aligning with a student’s solu-
tion strategy [30]. This suggests that checking the syntactic struc-
ture is insufficient to correctly assess student projects.
Functional Program Analysis. In text-based programming lan-
guages such as Java and Python, instructors and learning systems
commonly use functional testing to automatically assess students’
programming assignments. For example, CloudCoder [14], Prob-
lets [15] and CodeWorkout [8] included test-case-based program
assessment in its built-in programming assignments, enabling stu-
dents to receive immediate feedback upon completion of a program-
ming assignment. Marmoset [27] allows students and instructors to
author and use test cases to grade their assignments, and provides
instructors with overviews of students’ performance on instruc-
tors’ tests. These systems make use of functional tests, where
certain test cases that include input-output pairs were executed, to
examine the correctness of a certain procedure (i.e., usually a func-
tion with a fixed name) inside student programs. Prior work used
functional tests to provide automated feedback to students, which
has been shown to improve their learning outcomes [4, 12, 18]. For
example, Gusukuma et al. used functional analysis to find students’
erroneous programs in Python, and generate misconception-driven
feedback to those programs, which has improved students’ perfor-
mance. However, these traditional, input/output-based testing may
not apply to visual, interactive programs.

WHISKER [29] is an automated testing framework for visual, in-
teractive programs written in Scratch. Similar to Snap! programs,

Scratch programs are highly concurrent, rely heavily on timers, and
are driven by events such as user interactions using keyboard and
mouse inputs [29]. To address the challenges of visual, interactive
programs, WHISKER allows educators to write and to automatically
generate [5] test cases in JavaScript which simulate user inputs
to a Scratch program and observe the program’s resulting behav-
ior. The authors evaluated WHISKER on 37 students’ programming
assignments on their completion of 28 properties, such as “only
one apple must fall down at a time.” They found the results pro-
duced by WHISKER to be strongly correlated with the instructors’
grading, showing that it is possible to use functional tests to grade
student projects in Scratch, although the actual test-authoring may
still be challenging for instructors [29]. SNAPCHECK is inspired by
WHISKER, but targets Snap!. More elaborated steps towards check-
ing Scratch programs are taken by BAsTET [28], which, for example,
implements an exhaustive state-space exploration to check for vio-
lations of requirements.

3 FORMATIVE STUDY & DESIGN
CHALLENGES

Our goal is to allow programming instructors to automatically
assess Snap! programs. Snap! allows students to create complex
games and apps using visual and block-based programming; it is
used by many students in the AP CS Principles and university
course each year as part of the BJC curriculum [10]. To understand
the design opportunities and challenges when grading students’
visual, interactive assignments, we started by manually inspecting
42 student submissions, taken from a classroom assignment. In
this assignment, students were required to implement a one-player
Pong game, where there is one paddle on the left / right side of the
stage 2, which must bounce a ball against a wall. The instructor
required students to implement the game with the following 10
requirements:

(1) key_up: The paddle moves up with an up arrow key.

(2) key_down: The paddle moves down with a down arrow key.

(3) upper_bound: When touching the upper bound, the paddle
does not move upwards when the up arrow key is pressed.

(4) lower_bound: When touching the lower bound, the pad-
dle does not move downwards even when the lower key

is pressed.

(5) space_start: The ball starts movement when space key is
pressed.

(6) edge_bounce: The ball moves and bounce on edge unless
touching the back wall.

(7) paddle_bounce: The ball bounces back to stage when touch-
ing paddle.

(8) paddle_score: If the ball touches the paddle, increase score.
(9) reset_score: If the ball touches the back wall behind the pad-
dle, reset score to 0.
(10) reset_ball: If the ball touches the back wall behind the paddle,
reset ball to the center of the stage.

We manually analyzed these 42 student programs, and identified
5 design challenges of creating automated testing framework for
these visual, interactive programs, described below.

2 A stage is where Snap! displays its sprites and actions



Dynamic User Inputs. For non-interactive programming prob-
lems, students’ programs usually consist of one or more individual
functions. A standard testing approach is to use test cases that
specify input-output pairs, checking if the output of the function
matches the expected output for each input. For example, in an
integer sorting problem, the students write a function (such as
sort()) that takes a list of integers as the input parameter. To test
students’ programs, the instructor prepares test cases which call
the students’ sort () functions with a pre-defined list of integers,
and then check whether the values returned are identical to the
corresponding sorted list.

For visual, interactive programs like Pong, however, the input to
the program is a constant stream of signals from input devices like
the keyboard and mouse. Users observe the changes of graphical
elements and send different inputs according to what they observe
over time. Such inputs are dynamic and dependent on the program
state. For example, in the Pong program, a user may press the up
arrow to move the paddle up when they see the ball go up. Such
input stream can be challenging to encode as standard input data.
Visual Outputs. In a non-interactive programming problem (e.g.,
an integer sorting problem), the instructor may define the outputs
as a list of integers and check whether the student program returns
such output. However, it is less clear how to define output as a single,
“correct” value for visual, interactive programs. These programs
include multiple elements (e.g. the sprites in Snap! or Scratch), each
having its own properties (e.g., direction, position).

Delayed Responses or Outputs. For visual, interactive programs,
specifying just the input and output is insufficient—the output
sometimes happen after certain delays, and this time difference may
be different across student programs. For example, when testing the
key_up behavior, with different implementation approaches, the
paddle movement and the keyboard pressing happen at different
timestamps: a student’s program may move the paddle with key
continuously: the paddle may move smoothly upward, or in larger
bursts. The delays between inputs and outputs are different in these
two scenarios, and caused difficulties to specify the delay in a test
program.

Requirements with Temporal Constraints. When specifying
test cases for non-interactive programs, instructors do not need to
distinguish between which specifications are “forever true”, and
which are “sometimes true”. For example, in the integer sorting
program, the program finishes execution in milliseconds, and in-
structors do not need to specify intermediate invariants during the
program execution, such as the order of the array after the third
iteration of the algorithm.

However, requirements on interactive programs include differ-
ent temporal constraints: some requirements should be always
satisfied (e.g., edge_bounce); some should be checked only once
(e.g., space_start); some should be checked after another (e.g., up-
per_bound should be checked after key_up)). Specifying such time
constraints adds challenges.

Various Implementations. We have identified several challenges
of doing functional testing in these interactive programs, such
as challenges to specify input, output, and specify temporal re-
strictions. Prior work in automatic assessment of Snap! programs
identified similar challenges, and instead applied syntax-based rules
on the AST [2, 17, 30]. However, our analysis of students’ Pong
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Figure 1: Examples of ways students constructed code to al-
low paddle to not move with the upper arrow key when it
hits the upper bound.

code shows that students included a variety of code patterns to
implement the same behavior, causing challenges to apply rule-
based approaches directly to check for AST subcomponents: For
example, Figure 1 shows that when implementing the upper_bound,
students may 1) stop sprite movement when its y position is larger
than a certain value; 2) use Snap!’s built-in “glide” block to fix the
target of sprite movement; 3) use Snap!’s built-in block “if on edge,
bounce” to stop sprite movement when it hits edge; 4) stop the
entire script started by a “when up arrow key pressed” hat block.
Students may also include combinations of the above approaches,
resulting in multiple unpredictable ways to construct code that im-
plements the same observable behavior. This caused syntax-based
analysis approaches to be insufficient to understand and analyze
these programs.

These design challenges are in line with the challenges addressed
by WHISKER [29] in the context of testing Scratch programs. We
next discuss the design of SNAPCHECK to address these goals.

4 AUTOMATED TESTING WITH SNAPCHECK

Based on the challenges uncovered by the formative analysis, we
formulate the design goal for SNAPCHECK as to provide automated
testing framework for Snap!, with user-friendly specification of de-
sired properties, including complex inputs, outputs, and temporal
restrictions. We implemented SNAPCHECK in Snap!, but the testing
model of SNAPCHECK can also be applied to interactive sprite-based
visual programs on other systems, such as Scratch [24]. This would
require representing the relevant objects (e.g., Sprites) and proper-
ties (e.g., x coordinate) of those systems. A similar model may be
able to support 3D interactive graphical programs such as Alice [3].
SNAPCHECK is an open-source software that can be downloaded at
github.com/emmableu/SnapCheck.

4.1 Authoring Test Cases in SNAPCHECK

To test programs using SNAPCHECK, an instructor needs to write a
list of test cases, each with a name, and its rules to programmatically
imitate what a human tester does when running a Snap! program,
described below. The test cases can be defined either through an
selection-based User interface (shown in Figure 4), or in JavaScript
by using APIs provided by SNAPCHECK. For example, to check
paddle_bounce rubric item, an instructor may define a test case
using the same name — shown in Figure 4.
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Figure 2: Automated Testing for paddle_bounce: the SNAPCHECK Test Harness keeps updating program states. When the WHEN
condition evaluates to True (Step 3), it checks for the THEN-IF condition after the defined delay (Step 8).

(always:); WHEN ball is touching paddle; After 5 steps;
THEN IF the direction of paddle is different from its
saved direction; THEN report test success; ELSE report
test failure.

We next define how such requirements can be specified step
by step, and illustrate the SNAPCHECK grammar using a railroad
syntax diagram, shown in Figure 3.

Step 1: Define a WHEN condition: WHEN Ball touches paddle.

The first step is to define when the rubric item should be evalu-
ated, which is done using a WHEN condition.

A condition is a predicate function * that keeps track of the
program state (e.g., sprite location, variable values) during the pro-
gram execution. It evaluates to true if a program state satisfies a
required property. SNAPCHECK allows multiple options for spec-
ifying a condition, including 1) sprite location and directions; 2)
relation between sprites, such as one sprite touches another or a
sprite touching the edge of the stage; 3) variable values; 4) compar-
ison with a cached state saved from from the last step of execution,
such as x coordinate smaller than that from 1 step ago, meaning
the sprite moves to the right.

A WHEN condition is a predicate function that triggers the start
of a test case when it is true. For example, if an instructor defines
a WHEN condition: WHEN ball touches paddle, SNAPCHECK will
constantly track whether the ball is touching paddle, and when
this function returns to true, it starts executing the next statement
defined by the user, described in Step 2.

Implementation detail: How does SNAPCHECK define and track
its WHEN conditions internally? As shown in Figure 2, SNAPCHECK
uses a Test Harness module to monitor the program state at every
internal execution step of Snap! (i.e., a block of code). At every
step, the Test Harness executes the WHEN condition function, and
when it returns true, it starts executing the test cases following the
WHEN condition, which we describe next.

Step 2: Define a THEN-IF condition: THEN IF ball changes di-
rection.

After defining the WHEN condition, the instructor can use the
keyword THEN-IF to specify correct (or incorrect) behavior of the

3 A predicate function is a function that returns True or False.

program when a rubric item is evaluated, as determined by the
WHEN condition. This property is defined using the same set of
predicate functions as defined in Step 1.

Here, if the instructor wants to check whether the ball changes
direction, they can define the THEN-IF condition to check whether
the ball’s direction has changed from its “saved direction” - In
THEN-IF conditions, all properties have a saved variant, which is by
default the value of that property (e.g., direction) saved from Step 1
in the WHEN condition. Based on whether the THEN-IF condition
is satisfied, we may next run Test Case executes actions, defined in
Step 4.

Implementation detail: The keyword THEN starts a callback
function, which begins executing after the previous condition is
satisfied. It may optionally take the saved ball direction as an argu-
ment. When called, the callback function compares the current ball
direction with the argument, and records the success and failure
respectively. In addition, because THEN starts a callback function,
it is easily to add multiple THEN conditions after one, to afford
more expressive test authorizations.

Step 3: Define a delay: After 5 steps.

The WHEN condition and the THEN-IF condition do not always
happen simultaneously: there can be delays between two conditions,
explained in Section 3. This delay happens because it takes time
for the student program to execute from one line (e.g., detection
of touching) to another (e.g., change the ball direction), especially
when they are not directly adjacent.

An instructor may define the delay between the WHEN condi-
tion and the THEN-IF condition based on how many steps will be
executed between these two conditions. Here, a “step” is a time
interval, usually in milliseconds. Program environments such as
Snap! and Scratch make use of a “step” to update sprite properties
atomically on the stage [29], which by default takes place at every
frame of the display. For example, Figure 2, SNAPCHECK executes
“After 5 steps” after the WHEN condition, meaning to check the
THEN-IF condition after 5 steps of program execution.

Implementation detail: SNAPCHECK uses a countdown to track
how many steps has passed between the WHEN condition and the
THEN-IF condition: After the WHEN condition evaluates to true, the
paddle direction referred to in the callback function is saved at that
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step. The test case then waits for the delay parameter number of
steps and executes the callback defined in Step 2.

Step 4: Define a THEN action: THEN report test success.

An action defines programmatic actions SNAPCHECK can do to
1) report the success or failures of a test case, 2) supply input to
the executing program, or 3) change how future tests are run. For
example, an action can be reporting a test success; it can also be to
used to remove or add another test case test case, which we describe
in detail in Step 5.

After executing “WHEN ..., After ..., THEN-IF ..”, The instructor
can use the keyword THEN to define what to report, such as test
success or failures. This creates a data point for the final test statis-
tics, which writes to a spreadsheet that gets generated at the end
of the tests.

Implementation detail: As in Step 2, the keyword THEN also
starts a callback function that follows the previous callback func-
tions (e.g., in Step 2), or a direct WHEN condition (e.g., in Step 1).
Here, the callback reports the test to be a success.

Step 5: Specify temporal constraints: Always.

As explained in Section 3, some rubric items are satisfied when
a student’s program satisfied the requirements once, while some
require that it satisfies the requirement the whole time. To allow
specification for different time constraints, an instructor may use 3
ways to specify temporal constraints: (1) Always. v.s. One-shot.: The
default is Always., where SNAPCHECK runs the test case non-stop,
even when it returns a success; One-shot test cases, on the other
hand, only check the test case once. (2) add-on-start: the instructor
may use the keyword add-on-start to define test cases that test
programs immediately after the program starts. (3) Add/remove test
cases: As explained in Section 3, some test cases have dependencies,
and may benefit from specifying test cases with orders, such as
testing space_start first, and paddle_bounce next. Therefore, in the
action part of the program (e.g., in Step 4), an instructor may also
define adding and removing test cases, to specify the sequential
order of test cases.

4.2 Defining Test Inputs

When testing visual, interactive programs, instructors may need to
send relevant inputs reacting to what is observed. These inputs can
also be encoded as test cases using the THEN input... syntax, where
“Input” is a type of THEN action defined in Step 4. For example, in
the Pong game, a user needs to press the up/down arrow keys when
they observe that the ball is in a higher/lower position than the
paddle in order to make the paddle follow the ball, so that touching

When:
Sprites Touch ¢ paddie ball ®
condition
After 5 steps

Action:

If ¢ ®
—Then Report paddle_bounce
GElse Report paddle_bounce

+ action

Figure 4: Using SNAPCHECK Ul to specify paddle_bounce

can be observed. We call this “follow ball’ input, which can be
directly encoded as a test case in SNAPCHECK:

WHEN the y coordinate of the ball is greater than that

of the paddle; After 1 step; THEN input ‘up arrow’ key

for 4 steps.

5 EXPERIMENT

Dataset & Experiment Setting. To evaluate how well SNAPCHECK
achieves its goal of offering accurate automated tests for students’
visual, interactive programs, we used the same dataset as in our
formative study. But in addition to the 42 students’ final submissions
in Pong, we also made use of their their intermediate snapshots,
based on their trace data at 10 minutes, 20 minutes, and 30 minutes
(42, 40, and 38 snapshots at each time, respectively). We manually
graded all 162 programs based on the same 10 project requirements
specified in Section 3. We selected Pong as a proper assignment
to test the affordances of SNAPCHECK, since it includes a wide
range of properties, can be implemented using a variety of different
approaches, and its requirements for test automation embody the
challenges that we designed SNAPCHECK to address. One researcher
authored three different input series for SNAPCHECK: 1) up arrow
key; 2) down arrow key; 3) “follow ball” (see Section 4.2, and when
ball touches paddle, stops following. We authored automated test
sequences to re-execute the program by clicking green flag to start
game, and clicking space key to start ball movement. Because many
students starts ball movement by pointing to a random direction,
with each input sequence, we specify three different random seeds,
and run program against all test cases using all combinations of
random seeds and input series. At the end of testing, SNAPCHECK
reports the #satisfied reports / #total reports (i.e., satisfaction rate)
during each run. Because some test cases may have spurious failures
(e.g., when upper_bound is satisfied, key_up is not satisfied), we
used satisfaction rates that were lower than 0.1 to indicate a failure
of a test case, and those higher than 0.1 being satisfied test cases *.
Test Accuracy. Table 1 shows the accuracy, precision, and recall of
SNAPCHECK’s grading on 162 students’ snapshots. Our results show
that SNAPCHECK was able to provide accurate grading on all rubric
items. The high accuracy of these graded assignments showed that
teachers may benefit from SNAPCHECK for automatically grading
students’ project submissions. While instructors might ideally want

“We set this threshold a priori, but our final analysis found that a threshold of 0.05 also
reached similar results, showing that SNAPCHECK catches the satisfaction of properties
most of the times.



Table 1: Accuracy, precision, and recall of SNAPCHECK ’s
functional tests in 162 intermediate and final programming
snapshots, on 10 rubric items. As well as the prevalence of
positive items within each rubric item.

rubric item prevalence accuracy precision recall F1
key_up 0.76 0.99 0.99 100 1.00
key_down 0.73 0.99 0.98 1.00 0.99
upper_bound 0.55 1.00 1.00  1.00 1.00
lower_bound 0.56 0.99 0.99 1.00 0.99
space_start 0.50 0.98 0.98 0.99 0.98
edge_bounce 0.49 1.00 1.00  1.00 1.00
paddle_bounce 0.42 0.99 0.97  1.00 0.99
paddle_score 0.35 0.99 1.00 098 0.99
reset_score 0.23 1.00 1.00 1.00 1.00
reset_ball 0.31 0.99 0.98 1.00 0.99

100% accuracy, we argue that most teaching assistants (TAs) also
do not grade students’ work with perfect accuracy, and instructors
rely on students to dispute incorrect grades due to oversights.

Our results on students’ intermediate, incomplete programs sug-
gest there may also be applications of this work to providing forma-
tive feedback as students are working. While auto-grading requires
a set of test inputs and time to run them, a student may potentially
use SNAPCHECK to run their program and view the test results
presented by SNAPCHECK, such as “complete”, “incomplete” or “not
demonstrated by the test run”. This may help students develop
productive testing strategies, as prior work suggests that they often
do not use systematic testing [6].

6 DISCUSSION

Our results show that SNAPCHECK can not only assess students’
final projects accurately, but also their incomplete programs, which
includes buggy and erroneous code. This suggests the potential
of using SNAPCHECK to offer automated feedback to students on
their progress during programming. Similar to prior work [29], our
work identified challenges in automatically assessing students’ vi-
sual, interactive programs. Additionally, we present a novel testing
framework for Snap!. Going beyond prior work such as WHISKER,
we designed a selection-based user interface and presented a step-
by-step procedure to author test cases.

In addition, our experience with SNAPCHECK also identified
key factors that influence the accuracy of performing auto-
mated tests for visual, interactive programs. These are factors
that any functional tests on different types of visual, interactive
programs (e.g., Scratch) would also potentially rely heavily on, and
therefore add important considerations for future work, discussed
below:

High-Coverage Inputs. SNAPCHECK is only able to check for the
presence of behaviors when they are executed. For example, a pad-
dle_bounce behavior would not be present if the paddle does not
catch the ball, potentially leading SNAPCHECK to make false nega-
tive predictions if this behavior is implemented. In this assignment,
we designed the follow ball input to allow the paddle to follow the
ball’s movement and catch it, which requires expert knowledge of

the program. However, in more open-ended assignments, one set
of input series may not cover all possible student programs, and
may cause low program coverage and lower testing accuracies.
Temporal Specifications. The SNaPCHECK DSL uses a delay to
specify the time difference between the WHEN condition and the
THEN-IF condition. A delay can take any number of steps of the
program execution, defined by the user. Because each step executes
in milliseconds, the difference between 1 step and 10 steps may be
undetectable to the human eye, but it can make an important differ-
ence in the detection of behaviors. In our experiment, we generally
used a higher number of steps in delays (e.g., for the paddle_bounce
rubric item, even if the ball changes direction immediately when
touching paddle, we detect the change of direction after 5 steps).
However, this approach may not work if another event changes the
ball’s state in before 5 steps.

Complex Conditions. Unlike describing a rubric item in natural
language, testing programs requires the author to specify details for-
mally, including specifying multiple, complex conditions to handle
different edge cases. In the Pong program, there are two examples:

1) The rubric item space_start says that the ball should not move
before the space key is pressed (i.e., the ball movement is triggered
by the user pressing the space key, not immediately when the game
starts). Therefore, an instructor needs to define test cases to first
check that the ball does not move when the game starts, and after
key presses, start checking for ball movement. In addition to the
complex conditions, this test case may still fail erroneously, e.g.,
when a student’s program first resets from another position to the
center when the game starts, the “not moving when game starts”
check would fail, causing false negatives in the detection.

2) For the rubric item paddle_bounce, a student may fail to im-
plement this behavior, so the ball passes the paddle but bounces
off the wall behind the paddle. Distinguishing these two different
bouncing behaviors requires a specification of the difference in
delays, the x coordinates of the ball in relation to the paddle, and
the change of ball y coordinates in between WHEN condition and
THEN condition. Authoring these specifications require knowledge
of the Pong program, and may easily cause overly strict / loose
specifications. Going beyond Pong, such requirements of complex
conditions may cause difficulties to specify more complex behav-
iors, such as shooting or jumping, which require authoring chains
of multiple test cases.

7 CONCLUSION

We introduced SNAPCHECK, a novel, automated testing framework
that tests visual, interactive programs in Snap!. We explained how to
author test cases in SNAPCHECK using a domain-specific-language,
and presented a novel Ul for authoring these test cases. Our eval-
uations on 162 student projects show that instructors may use
SNAPCHECK to accurately assess students’ programs, and to enable
offering formative feedback in the middle of programming.
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